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In 1980 Kleiser and Schumann [1] introduced the influence matrix method for solving
the coupled velocity–pressure equations of the Stokes problem which arises when the in-
compressible Navier–Stokes equations are discretized in time. The influence matrix method
is based on a suitable decomposition of the desired solution into a sum of solutions of sub-
problems which can be solved efficiently in a sequential manner. The technique guarantees
exact fulfillment of the continuity equation by employing the proper boundary conditions
for the pressure Poisson equation, which are obtained in the solution algorithm by enforc-
ing the divergence-free condition on the boundary. While the original paper [1] treated the
case of plane channel flow, a more general formulation of the influence matrix method was
given in [2]. Numerous authors have since been using this method, or variants thereof, as
well as its obvious extension to the analogous problem of the treatment of the vorticity
boundary condition when the streamfunction-vorticity formulation of the basic equations is
used.

In two recent papers [3, 4] the treatment of truncation errors in the original formulation of
the influence matrix method was criticized. The claim was that the algorithm described in
[1] contains some wrong boundary conditions which eventually lead to numerical solutions
with significant divergence errors. It is the purpose of the present Note to clarify that
the method given in [1] is indeed correct, and that the criticism in [3, 4] originates from a
misunderstanding of the original algorithm. To make the point of misunderstanding clear, we
will discuss the key points in the following. For a more detailed description of the influence-
matrix technique, we refer the reader to the references cited and to the presentation given
in Chapter 7.3.1. of the book by Canutoet al. [5].

Kleiser and Schumann [1] employed the influence matrix method within a spectral scheme
developed for plane channel flow. A mixed explicit / implicit time discretization was utilized
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along with Fourier expansions for the spatial discretization in the wall-parallel directions.
This discretization results in a set of four one-dimensional Helmholtz equations in the
wall-normal direction which have to be solved for each Fourier mode at each time step. The
first three of these equations are the discretized momentum equations, while the fourth is
the discretized Poisson equation for the pressurePn+1 at the new time leveltn+1.

If no-slip conditions are prescribed at the walls, only the Poisson equation and the
Helmholtz equation for the wall-normal velocityWn+1 are coupled. An efficient solu-
tion of the coupled equations forPn+1 andWn+1 poses difficulties, since natural boundary
conditions are available for the velocity only (homogeneous Dirichlet conditionsWn+1 = 0
are required at the no-slip walls). The proper pressure boundary conditions are not known
a priori, but are determined implicitly by the solution which has to satisfy the homoge-
neous Neumann conditionDWn+1 = 0 as a consequence of continuity (D represents the
operator of the first derivative∂/∂z in the wall-normal direction). This system of two cou-
pled Helmholtz equations forPn+1 andWn+1, together with homogeneous Dirichlet and
Neumann boundary conditions forWn+1, is commonly termed the “A-Problem” (see Canuto
et al. [5, pp. 216–217]. It is given by Eq. (1) in [3].

For the solution of theA-Problem Kleiser and Schumann devised the influence-matrix
technique which allows us to derive the correct boundary conditions for the pressurePn+1

directly from the continuity condition. In this method a so-called “B-Problem” is solved
rather than the originalA-Problem which differs from the latter by the fact that the Neumann
conditions forWn+1 are replaced by some Dirichlet conditions forPn+1. The space of all
possible solutions of the coupled system (Pn+1, Wn+1) with arbitrary Dirichlet conditions
for Pn+1 is spanned by a particular solution of this system and two solutions of the associated
homogeneous problem (Eqs. (2)–(4) in [3]). These three solutions will be referred to as
partial solutions in the remainder. Within the space of solutions the desired one is uniquely
determined by the requirementDWn+1 = 0 at the walls.

The individual Helmholtz equations that arise in the method outlined above have to
be solved numerically which implies some finite truncation errors. These approximation
errors deserve special care if the final solution is to be divergence-free to within machine
accuracy. This holds for any discretization method employed in the numerical solution of
the Helmholtz equations, whether it is a Chebyshev tau method (as in [1]), a Chebyshev
collocation technique (see [5]) or any other finite numerical scheme. According to [1], the
respective approximation errors can be taken into account in such a way that the continuity
equation is fulfilled exactly. This involves further auxiliary Helmholtz equations which differ
from the original ones with respect to the right-hand sides and the boundary conditions.
These auxiliary equations may be introduced either on the level of theA-Problem or on the
level of theB-Problem. The latter approach was adopted by Kleiser and Schumann, who
applied the correction algorithm to each of the three partial solutions of theB-Problem.
In this case the required auxiliary solution (P̃, W̃) has to satisfy homogeneous Dirichlet
conditions for bothW̃ and P̃. Although the correction must be conducted for each of the
partial problems separately, the involved auxiliary solution is the same for the three cases.

In the alternative approach, which is described in [3], the correction is conducted on the
level of theA-Problem rather than on the level of theB-Problem. This requires the solution
of an auxiliary A-Problem with the boundary conditions̃W = DW̃ = 0 (Eqs. (14.a) and
(14.b) in [3]). For the solution of thisA-Problem again an influence-matrix technique may
be employed. The final solution is then obtained from a linear combination of the solutions
of the twoA-Problems.



         

LETTER TO THE EDITOR 87

In principle, the correction algorithms employed in the two approaches outlined above
are similar. It must be stressed, however, that they differ significantly in detail as becomes
evident from the difference in the boundary conditions for the auxiliary solutions. Now the
point of misunderstanding in [3] is that the author assumed that the auxiliary solutions of the
B-Problem given in [1] were to be employed for a correction on the level of theA-Problem.
If this is done, the correction algorithm will necessarily fail and the resulting flow fields
will exhibit about the same divergence errors as the uncorrected solution. This happened
in [3] and led to the false conjecture that Kleiser and Schumann [1] had given the wrong
boundary conditions for the auxiliary solution. The algorithm which is then put forth as
a corrected Kleiser–Schumann method is a valid method to deal with the approximation
errors on the level of theA-Problem; it is, however, not a corrected version of the method
presented in [1].

Kleiser and Schumann developed their method “in order to obtain an exactly divergence-
free solution,” as stated on page 169 of [1], and this was indeed achieved. The application
of the influence-matrix technique leads to numerical solutions where divu = 0 is fulfilled to
machine precision (except for the loss of a few digits, in practice to about 13–14 rather than
16 decimal places on a CRAY Y-MP computer).

In conclusion, we wish to point out that the original algorithm of the influence matrix
technique as described in [1] works perfectly and does not need any correction. It represents a
very accurate and efficient method which has been applied successfully by many researchers
to a variety of laminar, tansitional and turbulent flows in the past.
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